Demand Response Fundamentals, Evolution, and Industry Leaders

Ed Thomas, PLMA Executive Director
ethomas@peakload.org (707) 652-5333
LEADERSHIP IN SHARING LOAD MANAGEMENT EXPERTISE

Introduced refreshed PLMA logo and tagline with article posted viewed by over 900 people in Utility Dive

Published industry reports

Produced joint webinars with AESP, SEPA, Parks Associates, Greentech Media

Placed speakers at Distributech, Edison Electric Institute, AESP, US Energy Association, Parks Associates and 5 other industry events

Utility Load Management Exchange achieved record-breaking attendance at in-person, multi-day events in Coronado, Calif. and Austin, Texas adjacent to PLMA Conferences
Voice of Load Management Practitioner

1. Accenture
2. Advanced Energy
3. Alectra Utilities
4. Ally Energy Solutions
5. AESC
6. Ameren
7. American Public Power
8. Apogee Interactive
9. Applied Energy Group
10. Arizona Public Service
11. Aquanta
12. Austin Energy
13. AutoGrid Systems
14. BGE, an Exelon Company
15. Berkshire Hathaway Energy
16. Bidgely
17. Blackhawk Network
18. Bonneville Power Admin.
19. BPL Global
20. BTES
21. Buffalo Niagara Medical Ctr
22. Carina Technology
23. Central Hudson G&E
24. Centrica Business Solutions
25. Chelen PUD
26. City of Tallahassee Utilities
27. CLEAResult
28. COI Energy Services
29. Commonwealth Edison
30. Con Edison
31. Connected Energy
32. Consumers Energy Co.
33. Cpower
34. CPS Energy
35. Crius Energy
36. Customized Energy Solutions
37. Dairyland Power Co-op
38. DTE Energy
39. Duke Energy
40. E Source
41. E4TheFuture
42. Eaton
43. Ecobee
44. EcoFactor
45. Ecotagious
46. Edison Electric Institute
47. Efficiency Vermont
48. Electric Ireland
49. Emerson Climate Tech.
50. Enbala
51. Encycle
52. Enel X
53. Energy Datametrics
54. Energy Federation
55. EnergyHub
56. Energy Solutions
57. EnerVision
58. Engie
59. Entergy
60. EPRI
61. ERS
62. Eversource
63. Extensible Energy
64. Fairbanks Morse
65. FleetCarma
66. Franklin Energy
67. Georgia Power
68. Google (Nest)
69. Great River Energy
70. GridOptimize
71. Hawaiian Electric
72. High West Energy
73. Honeywell Smart Energy
74. ICF
75. Idaho Power
76. IGS
77. Illume Advising
78. Indianapolis Power & Light
79. Integral Analytics
80. IPKeys Power Partners
81. Itron
82. Jackson EMC
83. JouleSmart Solutions
84. KCP&L
85. Landis & Gyr
86. Leap
87. Lockheed Martin
88. Message Broadcast
89. Modesto Irrigation District
90. Mosaic Power
91. National Grid
92. NRECA
93. Navigant
94. NB Power
95. New Hampshire Electric Coop.
96. Nexant
97. Next Energy Party
98. New Braunfels Utilities
99. North Carolina EMC
100. Northwestern REC
101. NRG Curtailment Solutions
102. NTC Corporate
103. Oglethorpe Power Corp
104. Okla. Gas & Electric
105. Olivine
106. Omnetric
107. Oncor Energy Delivery
108. Opinion Dynamics
109. Orange & Rockland Utilities
110. Pacific Gas and Electric
111. PECO, an Exelon Company
112. Pepco, an Exelon Company
113. Portland General Electric
114. Powerley
115. Rappahannock Electric
116. Research into Action
117. RF Demand Solutions
118. SMUD
119. Salt River Project
120. Sand Diego Gas & Electric
121. Schneider Electric
122. Scope Services
123. Sensus USA
124. Simple Energy
125.Skipping Stone
126. SEPA
127. Snohomish PUD
128. Southern Calif. Edison
129. SoCal Gas
130. Steffes Corporation
131. Tacoma Power
132. Tantalus
133. Tendril
134. Tenn Muni Electric Pwr Assn
135. Tenn. Valley Authority
136. The Brattle Group
137. Threshold
138. Tierra Resource Consultants
139. Tokyo Electric Power
140. Tri-State G&T Assoc.
141. Tuscon Electric Power
142. United Illuminating
143. Utility Load Mgmt Exchange
144. Vectren
145. Vortex Peaker
146. Waseda University
147. WaterFurnace
148. Westar Energy
149. West Monroe Partners
150. Whisker Labs
151. Xcel Energy
152. Zen Ecosystems
153. Zeuthen Mgmt Solutions
154. ZOME Energy Networks
Education Planning Group produced

- Week-long training presented in Phoenix co-hosted by Arizona Public Service and Salt River Project on: DR Market Fundamentals, DR Program Design and Implementation
- Demand Response Fundamentals and Evolution courses presented in Coronado, Calif and Austin Texas adjacent to PLMA Conferences, and in Washington, DC adjacent to SEPA event and full-day course presented
- First interactive on-line training course with Enerdynamics called Demand Response Fundamentals
Demand Response Fundamentals
Demand Side Management

Conservation

Energy Efficiency

Demand Response

Load Shape Impact of Residential Direct Load Control

Projected Load

Load on TOU Rate During CPP Event
Demand Response – its “Fast EE” for the Grid
Why Utilities Need Demand Response

• Supply has to always meet demand
• Must be available immediately
• When demand may exceed supply
• DR is needed to reduce demand
The “response” is based on a payment for either:
• the willingness to change behavior (capacity), or
• the actual change (performance)

in the “demand” level of electric energy

Payment can be based on the actual reduction controlled by:
• the electricity customer, or
• programmed into the customer’s equipment

responding to either:
• a grid system operator reliability request, or
• a price signal, or
• on the availability to be on call
80 People show up for a flight on a day of high travel demand

Bombardier CRJ-700 Only Has Capacity for 70 People

Airline pays 10 people to take a later flight (e.g. provide an incentive in the form of ticket vouchers)

Source: Skipping Stone
Demand Response in the Utility Industry

Power Grid only has 70 MW

Power Grid needs 80 MW

Power Grid pays consumers to reduce 10 MW to balance supply & demand

Source: Skipping Stone
Policy Drivers of DR Programs

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Deferral</td>
<td>- Delaying investments in new generation capacity to meet reserve requirements</td>
</tr>
<tr>
<td>Improved Reliability</td>
<td>- Developing curtailment capability to address short-term/emergency supply shortfalls</td>
</tr>
<tr>
<td>Deferral of T&D Upgrades</td>
<td>- Delaying investment in specific, localized substations and feeders using DR as a demand side resource</td>
</tr>
<tr>
<td>Operational Cost Savings</td>
<td>- Reduction of system operating costs through fewer starts of peaking units, reduced need for spinning reserve from generators, and economic dispatch of DR resources</td>
</tr>
<tr>
<td>Economic Dispatch</td>
<td>- A possible alternative to new generation or a more economical way to provide ancillary services</td>
</tr>
<tr>
<td>Integration of Intermittent</td>
<td>- Commission rulings to have ESPs fund and operate DR programs or achieve DR curtailment goals</td>
</tr>
<tr>
<td>Renewable Resources</td>
<td></td>
</tr>
<tr>
<td>Regulatory requirements</td>
<td></td>
</tr>
</tbody>
</table>

Source: Navigant
Types of DR programs

• **Dispatchable = call or control or bid in advance**
 • Wholesale market directed economic programs
 • Wholesale market directed reliability programs
 • Direct Load Control, e.g. automatic appliance shut-off
 • Interruptible Rates, i.e. lower rates for directed reductions

• **Non-Dispatchable / Price-Responsive Demand = pre-set**
 • Critical Peak Pricing – scheduled
 • Peak Time Rebate – built into a rate
 • Time-Of-Use Pricing – annual schedule
 • Dynamic Pricing – all of the above
Call on DR when it is needed

Peak-Day Load Shape
Before and After Load Control

8,000
9,000
10,000
11,000
12,000

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour
Megawatts

Use few DR resources
Use more DR resources
Use few DR resources

250 MW
1000 MW
500 MW

Source: Navigant
Load Shape Impact of Residential Direct Load Control

- Manage pre-event load to get more during event
- Manage post-event snapback to avoid new peak
- Smooth out load reduction to give steady MW that operators can count on
- Monitor indoor temperatures (for HVAC loads) to ensure customer comfort

Source: Navigant
Optimizing Multiple DR Resources Maximizes System Peak Reduction

- Smooth load shape during control event
- Like a bull pen, different loads can be called when needed
- It's all about the load impact, not what is controlled

Source: Navigant
Demand Response
Evolution
Demand Response Evolution

- Largely manual control
- Interruptible tariffs for large C&I
- 1-way Direct Load Control for Residential
- Used for Capacity Planning & Emergencies

- Introduced To Wholesale Markets
- Increased automation
- Increased Precision
- Eventually Ancillary Services
- Behavioral/voluntary Options
- Smarter Equipment
- 2-way communications
- Some Near Real-Time Visibility

- Provide Multiple Grid Services
- Respond to Controls and/or Price Signals
- Distribution & Transmission Relief
- Introduction of Storage
- Migration to DER
Renewables Growth Creates DR Opportunities

Increase in load could allow generators time to ramp down

Reductions in load could allow generators time to ramp up

Source: California Independent System Operator
Demand response and energy storage are sources of power system flexibility that increase the alignment between renewable energy generation and demand.

- **Demand Response** provides a means to shift demand to times of relatively high wind generation and low load.
- **Storage Technologies** can store excess wind generation for use in times of relatively low wind generation and high load.

This figure also shows how more flexible generation could accommodate increased RE penetration and can provide an alternative or supplement to DR and storage.

Source: GreeningtheGrid.org/ National Renewable Energy Laboratory Sept. 2015
A program design type that delivers the benefits of EE to customers and DR to the grid using the same technology intervention and/or a linked incentive while leveraging the same program delivery resources and infrastructure.
Thought Leadership Group
published 5 industry reports
and produced 30 webcasts
with over 5,000 registrant
Table of Contents

• Western Utility Perspectives of Demand Response, DER, Load Growth, and More - Mark Martinez, Southern California Edison, with Kent Walter, Arizona Public Service; Fabienne Arnoud, Pacific Gas & Electric; Brad Mantz, San Diego Gas & Electric; Richard Barone, Hawaiian Electric; and Darren Hanway, Southern California Gas

• Leveraging Legacy Technology Platforms for the New DER World - Richard Philip, Duke Energy, with Wayne Callender, CPS Energy; Mitch Vanden Langenberg, Dairyland Power Cooperative; and Derek Kirchner, DTE Energy

• The Future of DER: Energizing the Smart Home - Tom Kerber, Parks Associates with Rich Barone, Hawaiian Electric Company; Michael Brown, Berkshire Hathaway NV Energy and PLMA Board Chair; Tony Koch, Bonneville Power Administration; John Powers, Extensible Energy

• DERMS Software Selection Group Discussion - John Brown, Skipping Stone with Rich Barone, Hawaiian Electric; Jim Musilek, North Carolina EMC; Derek Kirchner, DTE Energy; Lee Hall, Bonneville Power Administration; Paul Wassink, National Grid

• DER Integration Challenges - John Powers, Extensible Energy, with Kelsey Horowitz, NREL; Rich Barone, Hawaiian Electric; and Matt Carlson, Aquanta

• Reinventing Demand Response with DERs - Derek Kirchner, DTE Energy with Rich Barone, Hawaiian Electric; Troy Eichenberger, Tennessee Valley Authority; and Brenda Chew, Smart Electric Power Alliance

• Save or Shift? How to Successfully Transition from EE to DSM/DER - Ray Martinez, Tucson Electric Power with Tom Hines, Tierra Resource Consultants

• Three Utility Approaches to Gas Demand Response - Brett Feldman, Navigant with Charles Umberger, Con Edison; Paul Wassink, National Grid; and Andrew Nih, Southern California Gas Company
2017 Utility Demand Response Market Snapshot

IN PARTNERSHIP WITH

NAVIGANT

OCTOBER 2017
Featured Case Studies

- BPA—SOUTH OF ALLSTON
 ALLSTON, WA
- SCE—VIRTUAL POWER PLANT
 LOS ANGELES, CA
- SCE—DESI 1
 ORANGE, CA
- APS—PUNKIN CENTER
 PUNKIN CENTER, AZ
- CONSUMERS ENERGY—SWARTZ CREEK ENERGY SAVERS
 SWARTZ CREEK, MI
- NATIONAL GRID—OLD FORGE
 OLD FORGE, NY
- CENTRAL HUDSON GAS & ELECTRIC—PEAK PERKS PROGRAM
 MID-HUDSON RIVER, NY
- CON ED—BROOKLYN QUEENS DEMAND MANAGEMENT
 BROOKLYN, NY
- NATIONAL GRID—TIVERTON
 NWA PILOT
 TIVERTON/LITTLE COMPTON, RI
- GRIDSOLAR—BOOTHBAY PILOT
 BOOTHBAY PENINSULA, ME

Demand Response Fundamentals, Evolution, and Industry Trends

Ed Thomas, PLMA Executive Director
ethomas@peakload.org (707) 652-5333